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Electronic states in complicated materials: the
recursion method

By RoeeEr HAaYyDOCK

Department of Physics and Materials Science Institute, University of Oregon,
Eugene, Oregon 97403, U.S.A.
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The determination of electronic states in complicated materials is difficult because of
large numbers of inequivalent and nearly degenerate electronic orbitals. The only
available approach is direct integration of the Schrédinger equation by path
summation for which the recursion method gives a convergent expansion of the
energy resolvent as a continued fraction whose parameters may be expressed as
summations of groups of mutually avoiding paths. The inverse Fourier transforms of
these continued fractions are matrix elements of the propagator and hence provide
convergent discrete approximants for Feynman path integrals. Path counting for
sequences of close packed layers is illustrated, and the application of the recursion
method to the structural stability of transition metal Laves phases is reviewed
briefly.
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The calculation of electronic states for materials with large numbers of inequivalent
atoms requires a general solution of the Schrédinger equation. In such complicated
materials, the coupling between electronic orbitals is usually larger than the
differences in the energies of the orbitals so that perturbation theory for the
electronic states does not converge, and because there are so many orbitals, a
variational approach requires minimization with respect to a large number of
parameters. In such circumstances the only approach is direct integration which,
because the systems are two or three dimensional, requires path summation or path
integration.

This paper describes the recursion method (Haydock 1980), a general solution to
the Schrodinger equation, which has been used for the past 20 years to calculate
densities of states and other electronic properties of materials with defects, disorder,
or large unit cells. The idea behind this method is that instead of trying to calculate
all the electronic states of the system, only those accessible from a given initial
orbital are determined. The electronic hamiltonian is recursively transformed into a
tridiagonal matrix by constructing a set of basis orbitals, of which the first is the
initial orbital. This process of tridiagonalization can be viewed in a variety or ways:
as direct integration of the Schrédinger equation in the non-degenerate subspace of
states accessible from the initial orbital, as a variational solution of the Schrédinger
equation in the subspaces spanned by powers of the electronic hamiltonian on the
initial orbital, or even as a method for summing infinite sets of terms in perturbation
theory.

This work returns to the origin of the recursion method in the counting of quantum
mechanical paths and presents a way of expressing physical quantities in terms of a
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550 R. Haydock

set of elementary determinants of paths. Friedel (1954) pointed out that the
moments, integrals over powers of energy, of the density of states projected on an
orbital, are the sums of products of the matrix elements of the hamiltonian along the
paths which begin and end at that orbital. This idea was applied by Cyrot-Lackmann
(1970) to the local densities of states of transition metals, and by Burdett (1986) to
a variety of solid structures. Because the moment expansion of physical quantities
does not, converge Haydock et al. (1972a) developed the recursion method as a direct
relation between the hamiltonian and the density of states. One objection to the
recursion method has been that the intuitive appeal of path counting was lost and
that the matrix elements of the hamiltonian in tridiagonal form have no simple
physical interpretation. It is shown below that instead of these matrix elements,
physical quantities can be expressed in terms of sums of mutually avoiding quantum
mechanical paths. Some simple examples of chemical reactivity and structural
stability are used to illustrate the ideas of path counting, and the application of the
recursion method to the structural stability of the transition metal Laves phases is
briefly reviewed.

The time development of a quantum mechanical system is given by the propagator,
exp{—1Ht}, applied to the initial state of the system ¢,, where H is the hamiltonian
and ¢ is time. However, for the purposes of this work, it is more convenient to work
with the Fourier transform of the propagator which is the energy resolvent
1/(E — H). The result of multiplying ¢, by the resolvent is singular on the invariant
states of H, contained in ¢, with energy £. The time-dependent evolution of ¢, can
be recovered by an inverse Fourier transform, and similarly, time-dependent
expressions can be recovered from all that follows.

2. Quantum path counting

Although either the full propagator or the full resolvent can be expanded in terms
of quantum path summations, in the interests of simplicity, consider just the
diagonal element of the resolvent,

R(E) = ¢5(E—H)™" ¢,, (2.1)

where in Dirac’s notation ¢¥ is the bra corresponding to the ket ¢,. Physically this
describes the energy spectrum of the invariant states contained in ¢, and its Fourier
transform is the propagator element for the system to start in ¢, and return to it after
a time ¢.

Expansion of this resolvent element in paths in equivalent to expansion of the
resolvent in powers of the hamiltonian,

R(E) =Z ¢§ H"¢o(1/E)""", (2.2)

where the sum is over # from nought to infinity. The expectation value ¢FH"@, is
converted to a path summation by introducing a countable, complete set of basis
orbitals {¢,,} to make,

R(E) =2 p,/E"", (2.3)

with fn =S Hy Hy oy Hy ) (2.4)

where the sum is over all paths of n steps beginning with ¢,, going from one basis
orbital to another, and ending with ¢,; and each term in the sum is the product of
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the matrix elements of H for each step of that path. The expansion in quantum paths
is always possible because there is always a countable complete set of orbitals, for
example the isotropic oscillator wavefunctions, or the orbitals localized within each
atomic cell. Since each path has a finite number of steps, the product of the matrix
elements of the hamiltonian is finite for each path; however, the expansion of the
resolvent in inverse powers of £, and the corresponding expansion of the propagator
in powers of ¢ are asymptotic rather than convergent. The sums over paths of length
n, W,, are also the moments of the projected density of states, as can be seen by
integrating £” over R(X) on a contour which encloses the real energy axis of the
complex energy plane.

The above expansion of the resolvent as a sum over paths does not converge
because the number of paths increases faster than any power of their length. This can
be seen in a simple system consisting of two identical orbitals A and B. At each step
of a path the choice is to step to the same orbital or to the other orbital. If the step
is to the same orbital, then that step contributes a factor of the energy of the orbital
v which is the same for both A and B, and if the step is to the other orbital, then the
contribution is 4, independent of whether the step is from A to B or from B to A. By
convention, there is one path of length zero, contributing one to y,; there is also one
of length one with u, equal to v; two of length two with p, equal to »*+A?; and so
on. In general, there are 2"~ paths of length » with x, equal to }(v+A)"+i(v—h)".
As n increases, both the number and contribution of the paths increases
exponentially, and since these contributions are divided by just £, the path
expansion in this example converges only for £ sufficiently large that it is
uninteresting. For other examples, the series converges nowhere.

In applications of quantum path counting, it is usual to truncate the set of basis
orbitals as in the tight-binding approximation where only atomic-like valence
orbitals are retained. For example in comparing the electronic states at transition
metal surfaces (Haydock et al. 1972b) needed only the atomic d-orbitals to get a
good qualitative picture of surface electronic structure. Atoms on different surfaces
of the same transition metal have different coordinations, for example the 111
surface of roc nickel has coordination 9, while the 100 surface has coordination 8. The
lowest moment of path length for which these two surfaces differ is u, which is
greater for the 111 surface by the ratio of 9 to 8 relative to the 100 surface. Thus the
ratio of the spread in energy of the electronic states at these two surfaces is (2) and,
crudely the ratio of the density of states at the Fermi level is (8)%. The reactivity of
a metal surface is roughly related to the amplitudes of states at the Fermi level ready
to hybridize with the electronic states of a passing atom; so from this simple path
counting argument and Fermi’s golden rule, one concludes that some sort of zero
temperature reaction rate on the two surfaces should be in the ratio of 8 to 9, the
ratio of squares of the hybridizing matrix elements.

3. Determinants of paths

An alternative to a series is the continued fraction expansion which from the time
of the ancient Greeks has been recognized as a highly convergent approximation
scheme. In this approach, the paths are generated from a set of elementary paths, as
for example, the paths in above the two orbital system are made up entirely of hops
which stay on the same atom and hops which change atoms. This path expansion
may be summed to give 1/(E —v—~h?*/E) which is the first two levels of a continued
Phil. Trans. R. Soc. Lond. A (1991)
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552 R. Haydock

fraction. If one attempts to extend this idea to a three-orbital system, expressions
become much more complicated and a general analysis is necessary.

In the nineteenth century, work on the above moment problem revealed that the
elementary quantities from which all the paths could be generated are a set of
determinants (Shohat & Tamarkin 1943) which may be expressed in terms of the
moments as
Mo My - Pop—y Hntr
My Mo oo My Py

Pnpsr - Pon—1Men+1
Ho My - Py My
M1 Ho oo Hp Hpta

Bn — . . PR . . . (3'2)

P Bps1 - - Pon—1 Mon

These determinants consist of sums of produets of the moments which in turn are
sums of products of the matrix elements of the hamiltonian along paths. Because the
same paths occur in many moments in each determinant, there is a great deal of
cancellation which makes direct evaluation of the determinants impractical.

The recursion method (Haydock 1980) avoids these determinants by direct
tridiagonalization of the hamiltonian. The process begins with a normalized orbital
¢,, and generates a new orbital,

¢ = (Hpy—ayp,)/b, (3.3)

where a, and b, are chosen to orthonormalize ¢, with respect to ¢,. The nth
recurrence is,

G = [((H—a,) Po—b, Pn_11/bys1, (3.4)

where a, and b, , are chosen to orthonormalize ¢, , with respect to ¢,,. A convergent
expansion of the resolvent is given by the continued fraction,

R(E) = 1/[E—a0—b%/(E—a1—b22/(E—a2—...))], (35)

from which it follows that these tridiagonal matrix elements generate the moments
of the hamiltonian. While this method of constructing the continued fraction is
numerically stable, it does not involve any explicit path summation, and so does not
give any physical insight into the importance of various physical processes. It is
difficult to interpret the parameters other than as matrix elements of an equivalent
one-dimensional hamiltonian.

The cancellation between paths in different terms of the above determinants can
be made explicit by introducing an artificial time dependence, and by considering
groups of paths. Ratios of the determinants are then the parameters of the continued
fraction expansion of the resolvent. Think of paths in terms of a step at every tick
of a clock. Each step goes from the current orbital to any other orbital including the
same one, and multiplies the contribution from the path by the matrix element of the
hamiltonian between the two orbitals of the step. The determinant B, is defined to
be the normalization of ¢, and the determinant A4, is simply the diagonal matrix

Phil. Trans. R. Soc. Lond. A (1991)
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element of H for ¢, which we can think of as the contribution from paths which start
at ¢, at t = 0 and end at ¢, at ¢ = 1. The next determinant is B, which we may think
of as the contribution from pairs of paths which start at t = — 1 and ¢ = 0, finishing
at t = 0 and ¢ = 1, where we now take for granted that paths start and finish on ¢,.
There are two ways that paths can satisfy this timing : the first is that one path leaves
the origin at t = —1 and returns at ¢ = 1 after two steps while the other path starts
and finishes at t = 0 with no steps, and the second way is that both paths consist of
one step starting at the origin at ¢ = —1 and ¢ = 0. From the definition of B,, the first
way of starting and finishing the paths contributes with a positive sign while the
second is negative because of the permutation of the times of finishing relative to the
times of starting. Paths which meet at the same orbital at the same time, contribute
to the determinant in two ways, but with opposite sign because of the permutation,
and so cancel. For example, in B, the pair of paths which stay at the origin from
t=—1andt =0, finishing at t = 0 and ¢ = 1, meet at the origin and contribute with
opposite signs depending on the order of finishing.

The (n+1) by (n+1) determinants of B, or 4, may be expressed as the sum of
contributions from groups of n+1 paths (Viennot 1989) starting at t =—n, t =
—n+1, ..., t=0, and finishing at t =0, ¢t=1, ..., t=nfor B, ort=0,¢t=1, ...,
t =n—1, not t = n, but rather ¢t = n+1, for 4,. The contribution from one of these
groups of n+ 1 paths is the product of the matrix elements for their steps with a sign
given by the permutation of the order of finishing relative to first out, last in. Groups
of paths which meet on the same orbital at the same time cancel because each
meeting allows the group to contribute twice but with opposite sign. Only the groups
of paths which never meet actually contribute to the determinant. It is worth noting
that because the determinants are the sums of contributions from groups of paths,
a perturbation to the hamiltonian produces only a polynomial rather than an infinite
series.

In terms of the determinants of mutually avoiding paths, the resolvent is given by
the continued fraction equation (3.5) where the parameters are,

b, = [B, 4 B,}/B, 1, (3.6)
and Ay = [An/Bn]_ [An—l/Bn—l]' (3.7)

Inverse Fourier transforms of the above continued fractions provide convergent
approximants to the Feynman path integrals (Feynman & Hibbs 1965). For
example, the matrix element of the propagator from ¢, to ¢, in time ¢ is,

f exp{—id(P)}dP = (2mi)™! f exp (—iBt) R(E) dE, (3.8)

where the integral on the left is over all paths P from ¢, at time 0 to ¢, at time ¢, with
the action A(P) appropriate for H; and the integral on the right is around a contour
in the complex E-plane which encloses the singularities of R(£). The path summations
can be viewed as a discretization of the path integral.

4. Transition metal Laves phases and the stability of stacking sequences

As a simple example, consider the bandstructure contribution to the total energy
of the Fcc structure from the partly filled s-orbitals of metal atoms. This structure
consists of spherical atoms in close-packed layers which can stack on top of one
another in three equivalent ways. For the ideal HCP structure the layers alternate in

Phil. Trans. R. Soc. Lond. A (1991)
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35332 A 16324 A7
= 19008 A

Figure 1. Schematic representations and numbers of the mutually avoiding paths which
contribute to the rcc band-structure energy.

position, while for the roc structure every third layer repeats. The band-structure
energy can be calculated from the projected density of states which for the s-orbitals
in these structures is also the average density of states because the s-orbitals are all
equivalent. The sum of the energies of the occupied states is then the band-structure
contribution to the cohesive energy of each structure.

The continued fraction for the projected resolvent and density of states can be
calculated using the above method of path counting with a simple hamiltonian which
has matrix elements - between nearest neighbour orbitals and zero otherwise. Each
orbital has 12 nearest neighbours and 42 second neighbours for the Fcc structure.
Some of the various kinds and numbers of mutually avoiding paths are shown in
figure 1.

Using the relations between the determinants and the continued fraction
parameters, equations (3.6) and (3.7), gives an approximate resolvent element,

R(E) = 1/[E—12h%/(E — 4h— 1Th?/(E — T68h/204))]. (3.9)

The band-structure energy per atom is then the sum of the residues of this resolvent
for the poles corresponding to occupied states, weighted by the energy of each pole.

To investigate the role of d-band electron per atom ratio, the recursion method has
been applied to the structural stability of the AB, transition metal compounds which
form in one of the three Laves phases (Haydock & Johannes 1975; Johannes et al.
1976) which are isomorphs of the MgCu,, MgZn,, and MgNi, structures. Like HcP and
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Fce, these compounds may be described by their stacking sequences which a much
more complex and repeat every 12th, 8th, and 16th layer respectively. The band-
structure contribution to the cohesive energy was calculated as a function of d-band
filling for each structure using a hamiltonian derived from canonical d-orbitals scaled
to the various atoms.

In this work the continued fraction parameters described above were obtained
from recurrences rather than path counting, so it was not possible to identify the
electronic processes which account for the structural energy differences. However,
the results did demonstrate the importance of the relationship between the local
environment of atoms and the symmetry of the atomic orbitals in that the band-
structure energy. The differences in band-structure contribution to the cohesive
energy calculated using a difference in energy between d-orbitals on the two kinds of
atoms which depends quadratically on the group number difference of the atoms,
correctly separates the structures of all the 76 known non-magnetic occurrences of
such compounds.

5. Conclusion

In the absence of symmetry, the quantum mechanical states of a system can only
be determined by direct integration of its equations of motion. Although the power
series expansion of the resolvent or propagator in paths does not converge, the
continued fraction expansion does, and its parameters can be expressed as ratios of
sums of mutually avoiding groups of paths, through which the behaviour of the
system can be related to elementary physical processes. Subtle differences in
structural energies can be calculated accurately by this means.

I thank the Cavendish Laboratory and Pembroke College of Cambridge University for their
hospitality during the writing of this paper, Volker Heine and W. Matthew C. Foulkes for the
questions which motivated this work, and the United States National Science Foundation
Condensed Matter Theory Program for support under grant DMR-8712346.
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Discusston

N. W. Asuacrorr (Cornell University, U.S.A.). It is indeed impressive that this
reformulation of the recursion method accounts for the subtle energy differences
found in systems with quite complex unit cells. Per atom, it would seem that these
energy differences are on the scale of a few tens of degrees. Can a simple physical
argument be offered that explains why ion dynamics (on the scale of a few hundred
degrees in a given structure) is apparently playing so insignificant a role ?

R. Haypock. The stable structure is that with the minimum Gibbs free energy, to
which the band-structure energy is one contribution. In the case of the transition
metal Laves phases, I have argued that the electronic band-structure energy is the
dominant contribution giving differences of order 107® rydberg per formula unit
which corresponds to temperatures of hundreds of kelvins at which some of the
compounds studied do indeed undergo structural transitions.

As to other contributions to the Gibbs free energy such as the ion dynamics, what
matters are again the differences between structures. The phonon spectra could be
calculated for the transition metal Laves phases by similar methods to those 1 have
used for the electrons. Their contributions to the free energy is like that of the
electrons but scaled by about 1073, the ratio of electronic to ionic masses. Thus,
although the electronic energy differences are of similar size to phonon energies, it is
the differences in phonon energies which matter and they are about one thousandth
of the differences in electronic energies.
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